

Tutorial ROBO Pro Coding

STEM Coding RoboMission

2025.01

1

Table of Contents

ROBO Pro Coding und TXT 4.0 Controller .. 2

Tutorials STEM Coding RoboMission ... 3

★ Encoder Motor und Servo .. 4

★ Optical Color Sensors ... 7

★ Interface Test ... 8

★★ Python Modules, Functions, and Imports ... 9

★★ Motor Control as Library [RoboMission_motor_servo].................................... 10

★★ START Button and TXT 4.0 GUI [RoboMission_display_start] 12

★★ Line follower with optical color sensors [RoboMission_line] 15

★★ Python Code with Blockly .. 18

★★ RGB Color Sensor as Library [RoboMission_rgbw_hsv] 19

★★ Measuring the battery voltage [test_battery] .. 21

★★ Template for your own projects [RoboMission_template] 22

★★★ Line follower with PID controller [RoboMission_linepid] 23

What's Next ... 25

2

ROBO Pro Coding und TXT 4.0 Controller

In its multilingual programming environment, the ROBO
Pro Coding software from fischertechnik offers the option
of graphical programming with Blockly as well as text-
based programming via Python3 with the TXT 4.0
controller.

ROBO Pro Coding is available for Windows, Mac, Linux, Android, and iOS
operating systems:

https://www.fischertechnik.de/en/apps-and-software

The documentation for Blockly in ROBO Pro Coding can be viewed at the
following link:

https://doc.fischertechnik-cloud.com/en/blockly

The documentation for the fischertechnik TXT 4.0
controller can be found here:

https://www.fischertechnik.de/en/toys/e-learning/txt-
4-0-controller

If you have any questions about the content of this document or the tutorial,
please contact:

fischertechnik-technik@fischer.de

https://www.fischertechnik.de/en/apps-and-software
https://doc.fischertechnik-cloud.com/en/blockly
https://www.fischertechnik.de/en/toys/e-learning/txt-4-0-controller
https://www.fischertechnik.de/en/toys/e-learning/txt-4-0-controller
mailto:fischertechnik-technik@fischer.de

3

Tutorials STEM Coding RoboMission

This document describes examples of how the sensors and actuators from
the STEM Coding RoboMission robotics set can be used. All examples are
based on the robot's model proposal but can also be used for your own
models.

All relevant examples in this document can be
imported directly into ROBO Pro Coding from
fischertechnik GitLab. For this purpose, the name of
the program can be entered in the search field under
Menu -> Import -> fischertechnik GitLab and the
corresponding program example can be loaded
directly.

Please note that this tutorial assumes that you are already familiar with
ROBO Pro Coding and know the basics of ROBO Pro Coding. The following
topics relevant to RoboMission will be covered in the next chapters, whereby
the level of difficulty can be classified as follows:

★ simple
★★ advanced
★★★ complex

To familiarize yourself with the components included and to get started with
ROBO Pro Coding, we recommend watching these videos:

• First steps with the TXT 4.0 controller
• The fischertechnik encoder motor
• The fischertechnik servo motor
• The fischertechnik color sensor
• The fischertechnik RGB color sensor

https://fiproductmedia.azureedge.net/media/Marketing%20Materials/Operating%20instructions/BA_576109_BAUANLEITUNG-STEM-CODING-ROBOMISSION.pdf
https://www.youtube.com/watch?v=h1E6j2uVuRM
https://www.youtube.com/watch?v=FLQM2p_JacM
https://www.youtube.com/watch?v=mFiXNc7nI7Y
https://www.youtube.com/watch?v=9xdTVi7utBY
https://www.youtube.com/watch?v=hTdAvw300SI

4

★ Encoder Motor und Servo
 A maximum of 4 encoder motors
(M1-M4, C1-C4) and a maximum of 3
servo motors (S1-S3) can be
connected to a TXT 4.0 controller at
the same time.

To do this, the corresponding motors are first assigned to the outputs in
the controller configuration in ROBO Pro Coding and can then be selected
in the main program.

Direct Motor Control

In the simplest case, the two encoder motors can be controlled without
using the encoders by directly setting the direction of rotation - clockwise
(CW) or counterclockwise (CCW) - and the speed value (0 ... 512) for the pulse
width modulation (PWM).

The following program
switches the two motors on
for 1 second and stops them
after the waiting time has
elapsed.

5

The disadvantage of direct control is that the two motors are not
synchronized with each other, i.e. one motor is always switched on and off
first and the other shortly afterwards. In addition, external influences on the
motors and the different friction between the wheels have a negative
effect on the robot's behavior. It is therefore not possible for the robot to
move precisely in a straight line.

Advanced motor control with synchronization of the motors

The firmware of the TXT 4.0 controller includes an extended motor control
function that already performs synchronous control based on the encoder
signals.

With the following
blocks, the two motors
M1 and M2 are moved
synchronously with
each other, and the
synchronous run is
then stopped again
after 1 second. If one
motor is blocked
during this time, the other motor follows the first motor. Synchronization is
relevant, for example, when the robot moves in a straight line.

Advanced motor control with synchronization and distance
specification

In addition to synchronous operation, a distance (number of pulses for the
encoder) can be
specified. This can
then be carried out
either for a single
motor or for several
motors
synchronously.

The status from the
extended motor
control can be
queried with the “has
motor ... reached
position” block. The
motor control uses
the status to signal
that the position has been reached so that program execution can be

6

continued. Once the distance has been reached, e.g. after 1000 pulses, the
motor is then stopped automatically.

Normally, it is
sufficient to query
the status of one
motor. However, the
status of all motors
can also be queried
to ensure that the
controller takes all
motors into account in the event of a cable break in an encoder.

Servo Motor Control

In contrast to the motor, which is usually used to drive the robot, the servo
motor can be used to approach absolute angles of approx. -90 ... 90 degrees
directly. The control and sensors are already included in the servo motor. The
servo motor is ideal for robot gripping devices, for example, wherever rotary
movements are required.

The servo motor moves to a
specific angle by specifying a
PWM value. The specification
is absolute. The central
position of the servo is approx. 256 and the two limits are 0 and 512. The
absolute values specified differ slightly depending on the servo. They should
therefore be calibrated individually for each servo. This can be done using
constants or variables in the program, for example.

It should also be noted that the servo has no feedback in relation to the
controller. The servo attempts to reach the specified position via the PWM
value. If the target position of the servo were permanently mechanically
blocked, a very high current could flow through the servo. This could then
damage the servo. This should be avoided at all costs when using the servo.

7

★ Optical Color Sensors

Digital or analog sensors can be
connected to the universal inputs
(I1-I8) on a TXT 4.0 controller.

To do this, the corresponding
sensors are first assigned to the
inputs in the controller
configuration in ROBO Pro Coding
and can then be selected in the
main program.

2x

The STEM Coding RoboMission set
includes two optical color sensors
that can be used to detect simple
light-dark transitions on the course,
e.g. black track. The optical sensor
can also be used to detect black-
white transitions, e.g. gray values.
This can be used to align the robot
precisely to the line or to implement
a line follower.

The analog value
of the two sensors
can be read out
with the following
blocks: The analog
value corresponds
in mV to the voltage measured at the two inputs I1 and I2.

Please note that the RGB color sensors are not connected to the universal
inputs, but to the I2C bus (EXT1 or EXT2 connection) of the TXT 4.0 controller.
The RGB color sensor is also included in the set and is covered in the
chapters below.

8

★ Interface Test

The actuators and sensors can also be tested quickly without a program. The
interface test in ROBO Pro Coding can be used for this when a connection
to the TXT 4.0 controller is established.

For servo motors S1-S3, the value can be set using the slider.

For motors M1-M4, the speed and direction of rotation of a motor can be set.

The value is displayed for the universal inputs I1-I8, e.g. for the optical sensors.
The individual universal inputs must be configured beforehand via the
selection box.

The current counter value C1-C4 for the encoder inputs is also displayed as a
value.

Please note that the interface test and a program cannot be started at the
same time.

9

★★ Python Modules, Functions, and Imports

In the RoboMission_motor_servo program
example, functions for motors and servo motors
are defined in additional files that can be found
in the structure under “lib”. The advantage of
having your own Python modules is that the
code is clearer and can be reused as a library in
other projects.

Functions that are available
locally in the module or in
the main program are
defined with “Functions”.
Functions can be defined
with parameters as well as
with return values.

The parameters are added
with (+) and defined
accordingly.

If the functions are to be used in
other files, they can be added via
“Imports”. To do this, switch to
the file in which the function is to
be used and select this function
from another module via
“Imports”.

The local functions “Functions” and imported functions “Imports” have
different colors. This allows you to differentiate between them in the
program flow.

Please ensure that you do not define any circular references between the
modules. Modules must not import each other's functions, otherwise the
imports cannot be resolved correctly.

10

★★ Motor Control as Library [RoboMission_motor_servo]

The RoboMission_motor_servo example shows
how an (encoder) motor and a servo motor can be
controlled.

Please familiarize yourself with how encoder
motors and servo motors work before you look at
the program. You will find the technical data for the
motors in the respective data sheets.

In the “motor” module, various functions are defined with which the motors
can be controlled asynchronously (without the use of encoders) or
synchronously (synchronized using encoders).

If the two motors are moved synchronously, the control waits until both
motors have reached a certain number of pulses. If one motor is blocked in
the meantime, the second encoder motor remains stationary until the first
motor has also
reached the
position. For
precise
movements of
the robot on
the course, the
two motors
must always
be
synchronized.
A distance can also be specified. If the distance is to be infinite, a negative
parameter, e.g. -1, can be passed to the forward_sync function. The two
motors then move endlessly synchronously until
both motors are stopped again with stop_sync.

So that the movement of the robot can be
specified in the motor functions, e.g. in the unit cm or in degrees, the pulse
counters of the encoder must be converted with the corresponding factors
in the program. These factors are included in the calibration function. If the
model of the robot, in particular the wheel distance and wheel diameter
from STEM Coding RoboMission, is changed, the factors calib_move and
calib_rotation must then be adapted to the new model accordingly.

11

In the case of a line follower or complex
control, it is best if the two motors are
not synchronized with each other. For
these applications, it is advantageous to
set the speed directly via pulse width
modulation (PWM) so that the two
motors can be set quickly and
independently of each other.

The “servo” module contains functions for the servo motor.
The servo motor has its own control and is given an absolute
position via (PWM: 0...512), which it tries to control as quickly
as possible. Very large currents can sometimes flow for a
short time and, depending on the current position, the
movements can then be very jerky. To avoid jerky
movements in the servo motor, intermediate positions must be specified by
the program at certain intervals. Slow movements are then also possible
with the servo motor.

The values for the individual positions can also be calibrated for the servo
motor. This is necessary because each servo has slightly different absolute
positions due to the tolerances.

The main program in RoboMission_motor_servo then looks like this:

12

★★ START Button and TXT 4.0 GUI
[RoboMission_display_start]

The example RoboMission_display_start shows how a graphical user
interface (GUI) can be created on the display of the TXT 4.0 controller in
ROBO Pro Coding. Various elements are available in ROBO Pro Coding on
the left sidebar in the GUI editor.

The following elements are used in this example:

Button (1): Starting the program sequence

Slider (2): Setting variable values

Label (3): Output of text

Status indicator (4): Output of binary states

On the left is the definition in the GUI editor, on the right is the
representation on the TXT 4.0 display.

The interface on the display can be configured as required. The font size and
font style can also be set in the properties of the elements.

The program sequence must be defined so that actions can be triggered via
the interface or program statuses can be shown on the display. It is also
recommended to provide a separate thread (a separate endless loop) for
updating the display. As the eye is sluggish, the display should be updated
every 200ms ... 1s at most. In addition, a separate thread for the display
relieves the main loop, in which the robot is often controlled, and the
response time must be very short.

(3)

(1)

(2)

(4)

(1)

(2)

(3)

(4)

13

Loading the interface usually takes a few seconds. To ensure that no
elements can be activated during initialization, all elements that trigger an
action can be deactivated in the properties at the beginning. When the
display thread is initialized, the corresponding elements can then be
specifically activated with set ... enabled.

Callback functions must then be defined for all actions (e.g. “on button ...
clicked” and “on slider ... moved”), which set variables for the
corresponding events. These can then be evaluated in the main program.

In the callback functions, it is recommended to call only short functions
and no blocking functions, as otherwise the callback functions can
influence each other.

14

 The program sequence in the main loop can then look like this:

To better understand the program, it is often advisable to provide output
with print(...) in the program flow in addition to the output on the display.
When the program is then started in ROBO Pro Coding, all outputs with
print() in the console can help with the analysis of the program as to when
which instruction was executed in the program. However, for control loops
with short response times of e.g. 10ms, the print() output should be avoided.

 The following shows the output on the TXT 4.0 controller display when the
program is executed. The status
first changes from “Please wait ...”
to “Ready” and finally to “RUN”.

With the START button, for
example, it is now possible for the
robot to start the program
sequence only when START is
pressed.

15

★★ Line follower with optical color sensors
[RoboMission_line]

The RoboMission_line example shows how a simple line follower can be
implemented with optical color sensors at the universal inputs.

Optical color sensors provide an analog voltage as a value in mV depending
on how much light is reflected from the course. White areas have a low value,
black areas a high value. If the sensor is located at the edge of the line, the
value read from the sensor is between the two minimum and maximum
values.

Because each optical color sensor has slightly different min and max values,
it is advantageous to calibrate each sensor individually. For example, a 360-
degree rotation can be carried out and the min and max value for each
sensor can be determined and saved from all measured values. The
calibrated values can then be used in the calculation.

If the robot is placed on a line and the calib_line_rotate360 function is then
executed, the min and max values per sensor are calibrated and saved in the
corresponding variables:

16

The values calibrated with this function can look as follows, for example:

calibLine min:173 171 max:1559 1485

In the
read_line_sensors
function for reading
the sensors, the
measured values
are then normalized
so that the line
variable has values
between -100 ... 0 ...
100. In addition,
several Boolean
variables are set to
indicate whether a
line end has been
detected or a white
area has been
detected. These
states can then be
used to perform a
180-degree turn at
the end of the line or to stop the line follower when the robot passes the
white area.

The function
follow_line_step is
then called in an
infinite loop, which
controls the motors
depending on the
calculated variable
line. The robot moves
one step straight
ahead, to the left or
to the right. This
happens at very short
intervals.

17

The main loop in the program can then look like this, for example:

If the speed of the motors is set too high, the robot will lose the line very
quickly. If the speed of the motors is set too low, the power of the motors will
not be sufficient when the battery charge is low, or the robot will move very
slowly along the line.

Many different methods are conceivable with a line follower. For example, a
line edge can be followed instead of the line. In this case, the
follow_line_step function must be adapted accordingly.

The line follower can be further improved with a PID controller so that the
robot does not lose the line even at a very high speed. The implementation
of such a PID controller requires knowledge of control technology, which will
not be discussed further in this tutorial.

18

★★ Python Code with Blockly

Most of the functions in ROBO Pro Coding can be implemented with Blockly.
There are many blocks for different use cases. It is very convenient to use the
blocks because the required instructions in Python are generated
automatically with ROBO Pro Coding.

However, sometimes Python commands need to be integrated into Blockly
programs because the corresponding block does not yet exist or because
the sequence of Python commands needs to be defined differently. This can
be done very easily in a Blockly program by creating the required Python
commands with the following Python blocks:

The “python imports” block can be used to import specific Python modules.
The blockly generator places the content at the beginning of the file.

The “python code” block can be used to define Python code anywhere in
the blockly program.

A Python editor opens when the block is clicked. Python code can then also
be defined over several lines.

Particular attention must be paid to the indentation of the source code, as
in Python the indentation via spaces or tabs has a significant influence on
the structure of the program.

19

★★ RGB Color Sensor as Library [RoboMission_rgbw_hsv]

RGB color sensor is connected to the I2C bus of the TXT 4.0 controller. To do
this, an RGB color sensor must be connected to the EXT1 or EXT2 connection
of the TXT 4.0 controller using a ribbon cable.

In contrast to optical color sensors, which are connected to the universal
inputs of the TXT 4.0 controller, the RGB color sensor is well suited for
detecting obstacles of different colors if they are to be detected at a greater
distance. Several sensors can also be used with the RGB color sensor, which
are then connected to the main sensor in a chain.

 The example program
RoboMission_rgbw_hsv shows
how the sensor values can be read
out.

The log module contains functions
for logging, whereby the logging
level can be changed.

The rgbcolorsensor module
contains all the basic functions for
reading the registers of the RGB
color sensor. All functions required for communication with the RGB color
sensor are implemented here.

The rgbcolorsensorutil module contains further functions, e.g. to convert
color values from the RGBW model (Red, Green, Blue, White) into the HSV
model (Hue, Saturation, Value) or as HEX values. In addition, some case
distinctions for the standard colors are already implemented.

The values of the sensor with the index 0 (main sensor) can then be read out
as follows, for example:

20

Another example program test_rgbcolorsensor_smbus shows how the
complete interface of the RGB color sensor can be used. Various additional
interfaces can be found in the screenshot.

(1) Raw values of the RGBW sensor:
Red/Green/Blue/White

(2) Brightness LEDs adjustable 0...255
(3) Calculated HSV values:

Hue/Saturation/Value
(4) fixed: Reference value for HSV

calculation either fixed (10000) or
adaptive with measured min ...
max values from the history

(5) Recognized block color R/G/B/Y
(6) Recognized color as HEX value
(7) Detected color as general text
(8) Sensor 1 (of 8 detected sensors), is

selected via (-) and (+) buttons
(9) Set time “160ms” for measurement,

is selected via (-) and (+) buttons
(10) bw: Switch for black/white mode
(11) loop: Endless measurement, if activated
(12) Start single measurement with “READ” if loop is deactivated
(13) Firmware version FW: 0.5 of the connected sensor

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8) (9) (10)
(11)

(12)

(13)

21

The example test_rgbcolorsensors_smbus shows how several RGB color
sensors (index 0-7) can be read out and the values of all sensors can be
shown simultaneously on the display.

★★ Measuring the battery voltage [test_battery]

The charge status of the battery connected to the TXT 4.0 controller can
have an influence on the current applied to the motors and thus affect the
behavior of the robot. To be able to react to low voltage, the voltage can be
read out in volts via an internal voltage input of the TXT 4.0 controller.

In the test_battery example, the voltage and therefore the approximate
state of charge can be read out using a Python function.

22

★★ Template for your own projects [RoboMission_template]

The RoboMission_template example
can be used to create your own project.

Import this project and modify it
according to your own requirements.

The functions used in this tutorial are
included as modules and can be used
in the main program or in other newly
created modules.

Build your own template and use it for
your own projects.

23

★★★ Line follower with PID controller [RoboMission_linepid]

The RoboMission_linepid example shows how a PID controller can be
implemented in the line follower.

In Python, for example, the simple-pid library exists for this purpose. Version
1.0.0 of this external library is already included in the firmware of the TXT 4.0
controller 3.1.8 and can be used directly. The documentation for simple-pid
can be found under the following link:

https://github.com/m-lundberg/simple-pid/tree/v1.0.0

First, the PID controller is initialized, whereby the
parameters Kp, Ki and Kd must be set. The
setting of the constants must be determined
experimentally and can be very time-consuming.
For the basics of PID and the correct selection of
parameters, please refer to the relevant external
literature.

Meaning of the parameters:

• Proportional term Kp
• Integral term Ki
• Derivative term Kd

The following functions are
called in each step of the
control loop:

In the first step, the sensors are
read out.

The calculation is then carried out in the PID controller. The variable line (-
100 ... 0 ... 100) is the control variable. The setpoint is in the middle of the line
at the value 0.

The speeds for the two motors are then calculated and set. Please note that
the speed of the motors must be limited to values between -512 and 512.

https://github.com/m-lundberg/simple-pid/tree/v1.0.0

24

The sensor values are read
out in the readSensors
function and standardized
to the calibrated values. To
do this, the calibration
routine is called once at the
start of the program, in
which the min and max
values are set. If the min
and max values do not
change, the values can be
set directly in the program
during initialization. In this
case, the calibration
function does not need to
be called up.

The speed is calculated
in the calcSpeed
function.

Experiment with
different parameters
Kp, Ki and Kd. Also try
changing the speed of
the motors. If the values
are set correctly, the
robot should then
follow the line even
more precisely.

25

What's Next
In addition to the STEM Coding RoboMission set, fischertechnik offers
many other additional components and individual parts that can also be
used.

Look at the fischertechnik homepage http://www.fischertechnik.de/en.

http://www.fischertechnik.de/en

